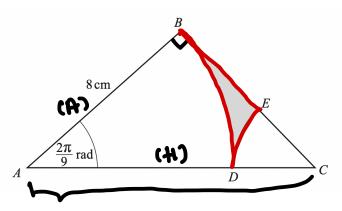

Chapter (8) Circular Measure



The diagram shows the right-angled triangle *OAB*. The point *C* lies on the line *OB*. Angle *OAB*= $\frac{\pi}{2}$ radians and angle *AOB* = θ radians. *AC* is an arc of the circle, centre *O*, radius 12 cm and *AC* has length 9.6 cm.

a. Find the value of θ .

$$9.6 = r\Theta$$

 $0 = \frac{9.6}{12} = 0.8 \text{ rad}$ [2]

b. Find the area of the shaded region.
Area of sector =
$$\frac{1}{2} r^2 \Theta$$

= $\frac{1}{2} l^2 \times 0.8$
= 57.6 cm^2

fan $0.8 = \frac{2}{12}$
 $\chi = 12.36$
 $\chi = 12.36$
Area = $\frac{1}{2} \times b \times h$
= $\frac{1}{2} \times b \times h$
= $\frac{1}{2} \times l 2 \times l 2.36$
= $\frac{1}{2} \times l 2 \times l 2.36$
= $\frac{1}{2} \times l 2 \times l 2.36$
The Maths Society

The diagram shows a right-angled triangle *ABC* with *AB* = 8 cm and angle *ABC* = $\frac{\pi}{2}$ radians. The points D and E lie on AC and BC respectively. BAD and ECD are sectors of the circles with centres *A* and *C* respectively. Angle $BAD = \frac{2\pi}{9}$ radians.

a. Find the area of the shaded region Area of sector BAJ= $\frac{1}{2}$ $\frac{70}{9}$ = $\frac{1}{2} \times 8^{3} \times \frac{21}{9} = \frac{64}{9}$ T cm² [6]

$$cos \frac{2}{9} = \frac{8}{2}$$

$$x = 10.44$$

$$cD = 10.44 - 8 = 2.44$$
Area of sector $DCE = \frac{1}{2} \cdot \frac{2}{9} \cdot \frac{9}{2} \cdot \frac{7}{2} - \frac{2}{9} \cdot \frac{1}{2}$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9} \cdot \frac{1}{9})$$

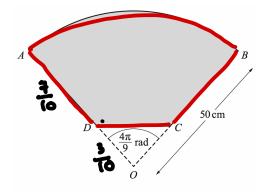
$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{7}{2} - \frac{2}{9} \cdot \frac{1}{9} \cdot \frac{1}{9})$$

$$= \frac{1}{2} \times 2.44 \times (\frac{1}{2} - \frac{2}{9} \cdot \frac{1}{9} \cdot \frac$$

2.

3


b. Find the perimeter of the shaded region.

Arc length
$$BD = r\Theta$$

 $= 8 \times \frac{2\pi}{9} = \frac{16\pi}{9}$

Arc length $ED = r\Theta$
 $= 2.44 \times \frac{5\pi}{18}$
 $= \frac{61\pi}{90}$

 $BC^{2} = 10.44^{2} - 8^{2}$

 $BC = 6.708 \text{ cm}$

 $BE = 6.708 - 2.44$
 $= 4.27$

shaded Perimeter = $\frac{16\pi}{9} + \frac{61\pi}{90} + 4.27$

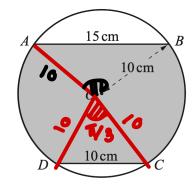
 $= 11.98 \text{ cm}$

0606/23/M/J/19

3.

a. Find the perimeter of ABCD.

The diagram shows a company logo, ABCD. The logo is part of a sector, AOB, of a circle, centre O and radius 50 cm. The points C and D lie on OB and OA respectively. The lengths AD and BC are equal and AD : AO is 7 : 10. The angle AOB is $\frac{4\pi}{9}$ radians.


Arc $AB = r\Theta = 50 \times 4\pi = 200\pi$ cm $AD = \frac{7}{10} \times 50$ = 35 cm BC = 35 cm03= 50-35 = 15 $cD^{2} = 15^{2} + 15^{2} - 2x15 \times 15 \times cos \frac{4\pi}{9}$

$$c_{D} = 19.28$$

shaded Perimeter = $19.28 + 70 + 200T$
= 159 cm

b. Find the area of ABCD. Area of sector = $\frac{1}{2}r^{2}\theta$ = $\frac{1}{2} \times so^{2} \times \frac{4\pi}{9}$ = $\frac{5000}{9}T$ Area of $\Delta = \frac{1}{2}absin C$ = $\frac{1}{2} \times \frac{15 \times 15 \times 5}{9} \frac{4\pi}{9}$ = 110.79 shaded Area = $\frac{5000}{9}T - 10.79$ = $\frac{1}{6}34.5 \text{ cm}^{2}$

0606/11/O/N/19

4.

The diagram shows a circle with centre *O* and radius 10 cm. The points *A*, *B*, *C* and *D* lie on the circle such that the chord AB = 15 cm and the chord CD = 10 cm. The chord AB is parallel to the chord *DC*.

a. Show that the angle *AOB* is 1.70 radians correct to 2 decimal places.

$$15^{2} = 10^{2} + 10^{2} - 2 \times 10 \times 10 \times \cos \Theta$$

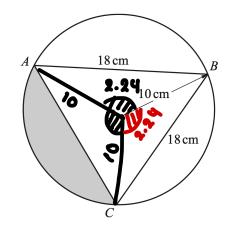
$$225 - 200 = -200 \cos \Theta$$

$$\cos \Theta = \frac{25}{-200}$$

$$\Theta = 1.696 \approx 1.70 \text{ (shown)}$$
[2]

b. Find the perimeter of the shaded region.

The Maths Society


c. Find the area of the shaded region.

Area of sector
$$= \frac{1}{2}r^2\theta$$

 $= \frac{1}{2} \times 100 \times 1.768$
 $= 88.4$
Area of $\Delta = \frac{1}{2}absinC$
 $= \frac{1}{2} \times 100 \times sin \frac{\pi}{3}$
 $= 43.3$
Area of $\Delta = \frac{1}{2} \times 100 \times sin 1.70$
 $= 49.6$
shaded Area = $88.4 \times 2 + 43.3 + 49.6$
 $= 270 \text{ cm}^2$

_

0606/12/O/N/19

5.

The diagram shows a circle centre O, radius 10 cm. The points A, B and C lie on the circumference of the circle such that AB = BC = 18 cm.

a. Show that angle *AOB* = 2.24 radians correct to 2 decimal places.

$$sin \Theta = \frac{9}{10}$$
 [3]
 $\Theta = 1.1198$
 $LAOB = 20 = 2.2395$
 ≈ 2.29 (shown)

b. Find the perimeter of the shaded region.

$$L \cos \theta = 2.24$$

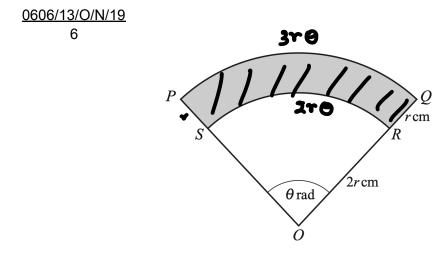
$$L \cos \theta = 2T - 2.24 - 2.24$$

$$= 1.803$$

$$Ac^{2} = 10^{2} + 10^{2} - 2 \times 10 \times 10 \times \cos 1.803$$

$$Ac = 15.69 \text{ cm}$$

$$Arc AC = r\theta$$


$$= 10 \times 1.803$$

$$= 10 \times 1.803$$

$$= 18.03$$
The Maths Society

c. Find the area of the shaded region.

Area of sector =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2} \times 100 \times 1.803$
= 90.15 cm²
Area of $\Delta = \frac{1}{2}$ absinC
= $\frac{1}{2} \times 100 \times \sin 1.803$
= 48.658 cm²
Shaded = 90.15 - 48.658
Area = 41.5 cm²


10 1

The diagram shows a sector *OPQ* of the circle centre *O*, radius 3r cm. The points *S* and *R* lie on *OP* and *OQ* respectively such that *ORS* is a sector of the circle centre *O*, radius 2r cm. The angle *POQ* = θ radians. The perimeter of the shaded region *PQRS* is 100 cm.

a. Find 0 in terms of 7.

$$100 = r + r + 2r \Theta + 3r \Theta$$
 $100 = 2r + 5r \Theta$
 $5r \Theta = 100 - 2r$
 $\Theta = 100 - 2r$
 $5r$

b. Hence show that the area, $A cm^2$, of the shaded region *PQRS* is given by $A = 50r - r^2$.

